Golang 并发编程与 Context

Context 是 Golang 中非常有趣的设计,它与 Go 语言中的并发编程有着比较密切的关系,在其他语言中我们很难见到类似 Context 的东西,它不仅能够用来设置截止日期、同步『信号』还能用来传递请求相关的值。这一节就会介绍 Go 语言中这个非常常见的 Context 接口,我们将从这里开始了解 Go 语言并发编程的设计理念以及实现原理。 »

如何写出优雅的 Golang 代码

如果你之前没有 Go 语言的开发经历,正在学习和使用 Go 语言,相信这篇文章能够帮助你更快地写出优雅的 Go 语言代码;在这篇文章中,我们并不会给一个长长地列表介绍变量、方法和结构体应该怎么命名,这些 Go 语言的代码规范可以在 Go Code Review Comments 中找到,它们非常重要但并不是这篇文章想要介绍的重点,我们将从代码结构、最佳实践以及单元测试几个不同的方面介绍如何写出优雅的 Go 语言代码。 »

浅入浅出 Go 语言接口的原理

接口是 Go 语言的重要组成部分,它在 Go 语言中通过一组方法指定了一个对象的行为,接口 interface 的引入能够让我们在 Go 语言更好地组织并写出易于测试的代码。然而很多使用 Go 语言的工程师其实对接口的了解都非常有限,对于它的底层实现也一无所知,这其实成为了我们使用和理解 interface 的最大阻碍。在这一节中,我们就会介绍 Go 语言中这个重要类型 interface 的一些常见问题以及它底层的实现,包括接口的基本原理、类型断言和转换的过程以及动态派发机制,帮助各位 Go 语言开发者更好地理解 interface 类型。 »

Go 语言中的 make 和 new

当我们想要在 Go 语言中初始化一个结构时,其实会使用到两个完全不同的关键字,也就是 make 和 new,同时出现两个用于『初始化』的关键字对于初学者来说可能会感到非常困惑,不过它们两者有着却完全不同的作用。在 Go 语言中,make 关键字的主要作用是初始化内置的数据结构,也就是我们在前面提到的数组和切片、哈希表和 Channel,而当我们想要获取指向某个类型的指针时其实可以使用 new 关键字,只是知道如何使用 new 的人真的比较少,我们在这一节中就会介绍 make 和 new 它们的区别以及实现原理。 »

谈谈 panic 和 recover 的原理

这一节中我们将介绍 Go 语言中两个经常成对出现的关键字 panic 和 recover 的实现原理,我们在上一节关注的 defer 与这里介绍的两个关键字其实也有着比较大的关系,我们会在剩下的部分展开介绍相关的内容,没有阅读上一节的读者还是需要补充一下相关知识,这样才能更好地了解 panic 和 recover 关键字的原理。 在具体介绍和分析 Go 语言中的 panic 和 recover 的实现原理之前,我们首先需要对它们有一些基本的了解;panic 和 recover 两个关键字其实都是 Go 语言中的内置函数,panic 能够改变程序的控制流,当一个函数调用执行 panic 时,它会立刻停止执行函数中其他的代码,而是会运行其中的 defer 函数,执行成功后会返回到调用方。 »

理解 Go 语言 defer 关键字的原理

现在很多现代的编程语言中其实都有用于在作用域结束之后执行函数的关键字,Go 语言中的 defer 就可以用来实现这一功能,它的主要作用就是在当前函数或者方法返回之前调用一些用于收尾的函数,例如关闭文件描述符、关闭数据库连接以及解锁资源。在这一节中我们就会深入 Go 语言的源代码介绍 defer 关键字的实现原理,相信阅读完这一节的读者都会对 defer 的结构、实现以及调用过程有着非常清晰的认识和理解。 »

浅谈 Go 语言 select 的实现原理

很多 C 语言或者 Unix 开发者听到 select 想到的都是系统调用,而谈到 I/O 模型时最终大都会提到基于 select、poll 和 epoll 等函数构建的 IO 多路复用模型,我们在这一节中即将介绍的 Go 语言中的 select 关键字其实就与 C 语言中的 select 有比较相似的功能。其中包括 select 的实现原理,包括 select 的结构和常见问题、编译期间的多种优化以及运行时的执行过程。 »

Go 语言 Channel 实现原理精要

Go 语言中的管道 Channel 是一个非常有趣的数据结构,作为语言中一种核心的数据类型,多个 Goroutine 在进行通信时就会使用 Channel 作为中间的通信方式,我们在一节中要介绍的就是 Golang 中 Channel 的实现原理。这一节中的内容总共包含两个部分,我们会先介绍 Channel 的设计原理以及它在 Go 语言中的数据结构,接下来我们会分析常见的 Channel 操作,例如创建、发送、接受和关闭的实现原理,由于在 Range 和 Select 两节中我们会提到 Channel 在不同的控制结构中组合使用时的现象,所以这一节还是会将重点放到 Channel 的常见操作上。 »

Go 语言 for 和 range 的实现

循环是几乎所有编程语言都具有的控制结构,也是编程语言中常用的控制结构,Go 语言除了使用经典的『三段式』循环之外,还引入了另一个关键字 range 帮助我们快速遍历数组、哈希表以及 Channel 等元素。在这一节中,我们将介绍 Go 语言中的两种不同循环,也就是经典的 for 循环和 for...range 循环,我们会分析这两种循环在运行时的结构以及它们的实现原理, »

谈 Golang 中的字符串和字节数组

字符串是 Go 语言中最常用的基础数据类型之一,虽然字符串往往都被看做是一个整体,但是实际上字符串是一片连续的内存空间,我们也可以将它理解成一个由字符组成的数组,Go 语言中另外一个与字符串关系非常密切的类型就是字节(Byte)了,相信各位读者也都非常了解,这里也就不展开介绍。我们在这一节中就会详细介绍这两种基本类型的实现原理以及它们的转换关系,但是这里还是会将介绍的重点主要放在字符串上,因为这是我们接触最多的一种基本类型并且后者就是一个简单的 uint8 类型,所以会给予 string 最大的篇幅,需要注意的是这篇文章不会使用大量的篇幅介绍 UTF-8 以及编码等知识,主要关注的还是字符串的结构以及常见操作的实现。 »

理解 Golang 哈希表 Map 的原理

这篇文章会介绍 Golang 中的另一个集合元素 — 哈希,也就是 Map 的实现原理;哈希表是除了数组之外,最常见的数据结构,几乎所有的语言都会有数组和哈希表这两种集合元素,有的语言将数组实现成列表,有的语言将哈希表称作结构体或者字典,但是它们其实就是两种设计集合元素的思路,数组用于表示一个元素的序列,而哈希表示的是键值对之间映射关系,只是不同语言的叫法和实现稍微有些不同。哈希表是一种古老的数据结构,在 1953 年就有人使用拉链法实现了哈希表,它能够根据键(Key)直接访问内存中的存储位置,也就是说我们能够直接通过键找到该键对应的一个值,哈希表名称的来源是因为它使用了哈希函数将一个键映射到一个桶中,这个桶中就可能包含该键对应的值。 »

Go 语言数组和切片的原理

数组和切片是 Go 语言中常见的数据结构,很多刚刚使用 Go 的开发者往往会混淆这两个概念,数组作为最常见的集合在编程语言中是非常重要的,除了数组之外,Go 语言引入了另一个概念 — 切片,切片与数组有一些类似,但是它们的不同之处导致使用上会产生巨大的差别。这里我们将从 Go 语言编译期间的工作和运行时来介绍数组以及切片的底层实现原理,其中会包括数组的初始化以及访问、切片的结构和常见的基本操作。 »

指令集架构、机器码与 Go 语言

Go 语言编译的最后一个阶段就是根据 SSA 中间代码生成机器码了,这里谈的机器码生成就是在目标 CPU 架构上能够运行的代码,中间代码生成一节简单介绍的从抽象语法树到 SSA 中间代码的处理过程,处理 SSA 的将近 50 个步骤中有一些过程严格上来说其实是属于机器码生成阶段的。这一节将介绍 Go 编译器将 SSA 中间代码转换成汇编语言和机器码的过程,除此之外也会介绍指令集架构以及硬件相关的一些知识。 »

详解 Golang 中间代码生成

中间代码是一种应用于抽象机器的编程语言,它设计的目的主要是帮助我们分析计算机程序,在编译的过程中,编译器会在将语言的源代码转换成目标机器上机器码的过程中,先把源代码转换成一种中间的表述形式,这里要介绍的就是 Go 语言如何将抽象语法树转换成 SSA 表示的中间代码。 »

Golang 如何进行类型检查

我们在上一节中介绍了 Golang 的第一个编译阶段 — 通过词法和语法分析器的解析得到了抽象语法树,在这里就会继续介绍编译器执行的下一个过程 — 类型检查。Go 语言的编译器使用静态类型检查来保证程序运行的类型安全,当然它也会在编程期引入类型信息,让工程师能够使用反射来判断参数和变量的类型,在这一节中我们还是会重点介绍编译期间的静态类型检查。 »